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GENERALIZED LINEARIZED CONICAL FIOW

By W. D. Hayes, R. C. Roberts, and N. Haaser
SUMMARY.

A basic theory of generalized linearized supersonic conical flow
for both inside and outside the Mach cone was developed and applied to
several specific problems including unsteady-flow conditions, A tri-
angular 1lifting wing in pitching and rolling with both subsonic and
supersonic leading edges was investigated and pressure coefficients
were obtained. A family of thin sweptback triangular wings having sym-
metrical thickness distribution was also investigated and analytic
expressions for wave drag and pressure coefficients were determined.
Values of wave drag coefficients were calculated and the results pre-

sented graphically. This theory stems from a fundamental idea of
Mr. G. N. Ward, )

INTRODUCTION

Of the methods and theories of linearized supersonic flow one of
the most productive of results 'directly applicable to aerodynamic prob-
lems has been the theory of conical flow. Conical flow refers to flow
in which the pressure perturbation and velocity components are constant
along straight lines or rays passing through a fixed point; for such
flow the assumption of linearity is not needed and nonlinear conical
flows are of great practical interest. In the generalization of conical
flow presented in this report, however, the linearizing assumptions are
necessary and the usual wave equation of steady linearized supersonic
flow will be considered.

In generalizing the concept of conical flow attention is focused
on the homogeneity of the solutions with the vertex as origin. In
regular conical flow the solutions for the velocity components are
homogeneous of degree 0, while the corresponding velocity potential
whose gradient is the vector velocity is homogeneous of degree 1. In
generalized conical flow solutions may be considered for which the
velocity potential is homogeneous of degree n with the velocity com—~
ponents homogeneous of degree n - 1. The quantity n, called the
degree of the generalized conical flow, may usually be an integer but
does not need to be., A further generalization comes from superposition
of solutions of different homogeneity.
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It is the purpose of this report to present the basic theory of
generalized linearized conical flow as developed from a fundamental idea
of Ward and to illustrate the theory by some aerodynamic applications,
The particular elements of linearized supersonic-flow theory which will
be needed are presented in brief. The point of view used in the analysis
is that used in reference 1, which thus may be considered a basic refer-
ence for this report. Some of the essential steps in the development
are the same as those in the conical-~flow theory of Goldstein and Ward
(reference 2). For a careful and thorough investigation and discussion
of the conical-flow theory the reader is also referred to the work of
Lagerstrom (reference 3), For an investigation of generalized conical-
flow theory from quite a different point of view reference may be made
to the theory of Germain (reference lj). No attempt is made to give more
than the most recent references as quite complete bibliographies may be
found in the references which are cited.

The coordinate system used is the right-handed system used in
references 1 to 3 with the third coordinate in the free-stream direction.
There are several advantages which may be claimed for this particular
orientation: The timelike position in the wave equation is delegated
to the last coordinate; in accordance with customary notation with this
equation; the variables x and y appear on an equal basis; and with
x taken as the lateral variable a flat wing appears horizontal on an
X-y projection. The principal disadvantage is that the first coordinate
does not appear in two-dimensional equations. The investigation reported
herein was conducted at Brown University under the sponsorship and with
the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS
Q velocity potential
v operator
a velocity of sound
P pressure
p density
S entropy
X,¥ 52 Cartesian coordinates
M Mach number

v free~stream velocity
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U,V,W

a

r,0,z

t

S,€,§
0,067,092

f,g

a(7),8(7),y(7)

3
RI

perturbation velocity components
angle of attack or of local slope .-
ratio of specific heats

1ift coefficient

drag coefficient

oblique transformation parameter -
hyperbolic distance

Jacobian

general homogeneous wave solution.
cylindrical coordinates

basic conical coordinate

conical coordinates within Mach cﬁne
conical coordinates outside Mach cone
arbitrary functions

homogeneous functions -

fundamental variable

real part

rolling angular velocity

piﬁching angular velocity

variable for Jacobi's imaginary transformation

'root chord

geémetrical wing parameters
root thickness ratio

thickness function
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9] velocity potential in unsteady flow

t time

0 operator involving solution of wave equation
W frequency

k reduced frequency

h(R) function of hyperbolic distance

n homogeneity parameter

T gama function

Jd . Bessel function

ELEMENTS OF LINEARTZED SUPERSONIC FLOW

Basic Flow Equations

With the usual assumptions of zero viscosity and heat conduction,
initial irrotationality and isentropy, uniform stagnation enthalpy and
fluid composition, and no body forces, it may be shown that the fluid is
always irrotational and isentropic and that there exists a velocity
potential ¢ whose gradient is the vector velocity of the flow field.
For steady flow this quantity satisfies the equation

2420 = (70)v(3?) 1)
where a 1is the local speed of sound in the medium, defined as
a2 = ?-E) (2)
ap S :

If the flow consists of a uniform flow of velocity V with velocity
of sound a, which is slightly perturbed the potential equation may be
expressed approximately, with terms of an order higher than O in the
perturbation dropped, in the form

Pux + Pyy + (1 - M2)9,, = 0 (3)



NACA TN 2667 | Y

where
M= V/ag (L)

Two principal assumptions are necessary for the validity of this linear-
ized potential equation. These are:

(1) The lateral velocity perturbation components must be small com-—
pared with ag. This requires that the quantity aM be small compared
with unity where o 1is the local inclination of the flow at any point.
Thus flows with small values of a are not necessarily linearized for
large M 1in the hypersonic range.

(2) The axial velocity perturbation component must be small com-
pared with |V - ap|. This condition would most immediately be expres—
sible in terms of restrictions on the pressure perturbation. However,

boundary conditions are usually set in terms of flow inclination, and
the appropriate condition which appears from the transonic similitude

+
theory is that - <? ?> be small compared with unity.
w2 - 1]3/2\ 2

With such singularities as occur at subsonic leading edges or vortex
sheet edges one or both of these assumptions fail locally.

Except in the incompressible or low-speed range M << 1 these two
assumptions require automatically that the flow inclination a itself
be small compared with unity, permitting the boundary conditions to be
linearized. For a surface locally parallel to the x—-axis the boundary
condition would be

Py = v =TVa - (5)

where a here is the local inclination of the surface to the principal
flow direction. With flow in the low-speed range the linearized potential
equation is valid with nonlinear or unlinearized boundary conditions.

The linearized potential equation is considered to be an equation
for the perturbation potential. The three Cartesian derivatives of this
potential are the three perturbation velocity components wu, v, and w.
The perturbation pressure, or difference between the local pressure and
that in the free stream, is expressed

2 4
p = —pﬁﬁf + li—-z—y—z) (6)
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The terms in u and v, although nonlinear, are properly included and
necessary in general; the skeptic may attempt to satisfy the condition
of zero mormal pressure gradient on a circular cone at zero incidence
without them., However, for many cases of importance and, indeed, for
all those exemplified in this report the additional “planar-system" or
mean~surface' assumption holds, and the pressure terms in u and v
are properly dropped leaving the simplified pressure equation

p = —pWw (7)

This additional assumption is discussed below,

Mean-Surface Assumption

The useful additional restriction here discussed has been previously
made by most investigators under the terminology of "planar system,"
"quasi cylinder," "flat body," "mean surface," and others, In its most
general form it is assumed that the boundary conditions on a body may
be satisfied at appropriate points on a mean surface. This mean surface
must be a part of a general cylinder with z-axis directrix; that is,
must be everywhere parallel to the z-axis. In order for the assumption
to be valid it is necessary that the body closely approximate the mean
surface and that the inclination of the body surface to the mean surface
be small., The case where the body is a wing and the mean surface is the
xz-plane is the one most commonly encountered.

The importance of this additional assumption is that it gives a
direct correspondence between the superposition 6f solutions with the
same mean surface and the corresponding body shapes. The assumption
also insures the validity of the simplified pressure equation (7).

Prandtl-Glavert Transformation

If with the axial variables tnchanged the lateral variables are
transformed by '

xt =yM2 -1 x | . ' A (8a)
y'=\/MZ——ly ' . (Bb)

the potential equation becomes .

q’xlil + q)ylyl - (PZZ =0 (9)
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which is of the same form as equation (3) with the Mach number equal to
VE. Where the planar-system or mean-—surface assumption is applicable
it is permissible to set

o' = M2 -1 ¢ (10)

this relation leaving the angle of attack, thickness ratio, and so forth
unchanged under the transformation. However, there must be a change in
aspect ratio, gap ratio, and so forth

Rt =yM2 - 1R (11)

and there is a change in the appropfiate 1lift and drag coefficients

C! = VM2 — 1 ¢, (12a)
Cp! = Y42 -1 ¢cp (12b)

In the general case where the mean-surface assumption is invalid
the factor in equation (10) must be (M2 - 1), with the same factor

appearing in equation (12a), and the factor (M2 - 1)3/2, in equa-
tion (12b). The angle of attack and thickness ratio are changed by the
faCtOI’ VM : - 10

In the analysis henceforth it is assumed that the Mach number equals
V2 so that the primes in equation (9) are dropped. Reduction of the
results to other values of the Mach number is carried out by the equa-
tions given above.

Oblique Transformation

The useful oblique transformation is essentially a Lorentz trans-
formation and was first applied to steady supersonic flow by Jones
(reference 5). The transformation is in the independent variables

1
X = ———(x! - mz!) (132)
1 - m?
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7=t (21 - mx!) (13b)

y=3' (13c)

€

These transformations form an Abelian group with the inwverse trans-
formation obtained by changing the sign of m. The Cartesian welocity
components obey the inverse transformation law

n= _.__]_I.._...(ux + mat) ‘ (1ha)
1 - m
1
W = (W + ') (1lb)
1 - me
v = v! (1Le)

Three other properties of this transformation are the invariance of the
hyperbolic distance, the Jacobian of the transformation being unity, and
the homographic form of the transformation for x/z:

R=V22 - %2 - 32 = (z1)2 - (x1)? - (y1)? (152)
X,¥52 X2
J(:-——-) = J(X ) =1 (15b)
1oyt at 1,3t
(f) = — (15¢)
1 - m('x )
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Symmetry Considerations

Where- the mean surface is a plane and a planar system exists it is
convenient to separate the potential with regard to symmetry in the
y—direction

Q=05 * Pa , . (162)
?s = 5[a(y) + o(~y)] (16b)
. Py = ]g'EP(y) - m(vﬂ (16¢c)

The symmetric part corresponds to the thickness distribution of the.body
under consideration; the antisymmetric part, to the mean camber and 1ift
distribution. Both ¢@g and @5 satisfy the potential equation indi-
vidually and it is possible to treat the two parts separately and
independently.

Where the mean surface is symmetrical with respect to the x-axis
considerations of, lateral symmetry may be applied. With a laterally
symmetric thickness or camber distribution the potential and pressure
solutions are laterally symmetric; with a laterally antisymmetric camber
distribution an antisymmetric 1ift distribution results.

Supersonic and Subsonic Edges

The edges of a mean-surface plan form are conveniently classified
according to the local~flow orientation. The free-stream velocity may
be considered to be composed of two perpendicular velocity components,
a normal one perpendicular to the edge and a tangential one parallel to
the edge. The normal one, taken positive from the region off the plan
form onto the plan form, is divided by the speed of sound in the free
stream to give a normal Mach number M,. If this quantity is positive
the edge is termed leading; if negative, trailing. If its magnitude is
greater than 1, the edge is supersonic; if less than 1, subsonic. If
M, = O the edge may be called a (subsonic) side edge.

The nature of the edge as indicated by this classification strongly
affects the nmature of solutions for the flow field. The Kutta condition
preventing an infinite behavior of 1ifting solutions must be applied on
all subsonic trailing edges. -
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§
SOLUTIONS HOMOGENEOUS OF DEGREE O

As a preliminary to expressing the generalized conical-flow solution
the properties of solutions to the wave equation which are homogeneous of
degree O are studied. Denoting the quantity of interest by T, with a
change to cylindrical coordinates, the wave equation may be expressed

Txx * Tyy = Tzz =0 (172)
1 1
Trr + Z T + > Tge — Tzz = 0 (17p)
T
With the new variable
t =1/z

introduced to replace r, the function T must be a function of t
and 6 alone. The equation for T becomes

$2(1L - t2)Tgg + B(1 - 268) Ty + Tgg = O (18)

In a similar manner the homogeneous solutions to the equation of
characteristics

i P -T2 =0 (19

2

satisfy the equation of characteristics of equation (18)
$2(1 - $2)142 + 142 = 0 (20)

The interior and exterior of the Mach cone are treated separately.

Mach cone interior.— In the case of the Mach cone interior the
coordinate

s = sech™Lt
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is introduced and the wave and characteristic equations become
Tgg + Teg = 0 (22a)
(g - itg)(Tg + iTg) =0 (22b)

Introducing the complex variable ¢ of the original Busemann linearized
conical-flow theory

€ = exp (s + 16) (23)

the solutions to equations (22) may be expressed
T = f(e) + g(e¥ (2La)
T = f(c) or g(e*) "~ (2kb)

where f and g are arbitrary anmalytic functions. Of interest for the
present purpose are the particular functions ¢, €*, {, and (¥,
where

26
£ - — (25)

1+ ¢

The principal reason for the use of this function is that for 6 =0 it
is real and equal to t and for +t =1 it is real and equal to sec 63
this gives it the nature of a physical coordinate for a flat wing.

Mach cone exterior.— In the case of the Mach cone exterior the
following coordinate is introduced

o = sec™lt (26)

The wave and characteristic equations take the form

1l
(@]

(27a)

Too ~ Te6

TO‘2 - T92

I
o

(270)
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Introducing the characteristic coordinates
01 =6 +o0c : (28a)

0y =6 -0 (28b)

the solutions may be expressed

T = £(81) + g(62) (29a)
T =1£(61) or g(62) . (29b)

The particular solutions of interest are simply 67 and 5.

The Cartesian derivatives of T are functions which are homogeneous
of degree —-1. Functions proportional to these Cartesian derivatives are
needed which are functions of T alone and hence homogeneous of degree O

(1) _ (1) _ ()

TX Ty T b

(30)

Such functions, provided they exist, are not unique but' may be made
-definite by arbitrarily establishing one of them. It is convenient to
do this by setting '

y(t) =1 (31)

In finding these functions it is not necessary to investigate e¢* or

£*¥ Tbecause the desired functions will be the complex conjugates of the
corresponding functions for ¢ and . Although a change from ¢ to
€*, for example, does make a difference in the functions, a change from
€ to T =f(e) will make no essential difference, the formulation in
terms of the different independent variables being, of course, changed.

Carrying out the indicated Cartesian differentiations yields, after
some analysis, the following results:
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T a B v4
1+¢2 .l—€2
€ - - 1
2 2
- 2
1 -
£ -1 -i ¢ 1
g o
81 - -cos 6q -sin 07 1
8o -cos 6o —sin 02 1
On the Mach cone, = eie, ¢ sec 6, 67 =60 =6, a=-cos 6, and

B = —-sin 6 in all cases.

The general solution will be established as a function of the

GENERALIZED CONICAL FLOW

Fundamental Solutions

"golution poinp® (x,,¥0,%0) in texms of an integral taken over values

of -the “argument point® (x,y,z).

The designations Tg

and T are used

for the values of the homogeneous quantity of interest T at the solu-

tion and arguhent points, respectively.

A new basic variable i5 defined

as a function of these points which vanishes when they coincide:

£=0

E = xoa(T) + YoB(T) + zoy(T)

for T =T,

(32a)

(32b)

where the variable vanishes as a result of Buler'!s formula for homogeneous

functions of degree O

XTx ¥ JTy + 2Ty = 0]

(33)

and equation (39). The fundamental idea of Mr. G. N. Ward was the defini-
' tionm and use of this new basic variable.
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The generalized conical solution may now be expressed

(o]
Q(beyb:ZO) =J[¢ g(&,T) ar (34)

where the absence of the lower limit indicates that the integral is an
indefinite one with the usuval arbitrary constant. In the exterior of
the Mach cone the general solution is the superposition of solutions of
the form of equation (34) with 67 and 0o chosen for T. In the

interior a real solution is obtained by taking the real part of a solu-
tion with T equal to ¢ or €, amounting to a superposition of a
solution (equation (3L4)) with its complex conjugate solution.

That equation (3l) does give a solution of the wave equation is
eagily ascertained by carrying out the indicated differentiations and
using the properties of equations (17a), (19), (30), (32a), and (32b).
The essential restrictions on g are that it have first and second
derivatives with respect to & and that it be analytic in T within
the Mach cone. The velocity components are expressed

i |
Togg £0s70) + | © a(r) BT o (352)

Yo = Pxg

To 3g(t,7)
Vo = @y, = Toy.O g(0,7o) +\/F B(T) ‘55;;:' dr . (35b)

Il

o ag(E’T) ar

Tozg €0:70) #/ () == (35¢)

Wo = Pz

For most cases of physical interest g(0,t) = 0 and the first terms
(homogeneous of degree -1) in equations (35) do not appear.

The solution procedure is divided into three parts: First, the
solution upstream from the vertex exterior to the Mach cone, if there
is any, is to be found, then the solution exterior to the Mach cone
downstream from the vertex, and finally the solution within the down-
stream Mach cone. In each case the solution found in the previous step
provides boundary conditions for the part of the problem at hand. The
solution in the upstream Mach cone is assumed null.
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Oblique Transformation

The oblique transformation is applied by equating a known solution
of the wave equation in the coordinates x, y, and Zz to a solution in
the coordinates x', y', and z!. This gives a new solution expressed in
terms of the primed coordinates

o(x,y,z) = ot (x!,y*,z!) (36)
The behavior of the various basic variables under the transformation is

first obtained. The variables {, cos 6, and cos 62 all obey the
same transformation law as does t cos 6 = x/z in equation (15c). Thus,

! -
S8 -m

¢ (372)
1-ml
cos 69! - m
cos 07 = (370)
1l - m cos 61'
cos 62' -m i
cos 02 = (37¢)

1l - m cos 62'

The quantity ¢ also follows a homographic transformation, but one
which is the square root of the other

m
€8 =
1+ VY1 - m?
€ = (37d)
m
1 - et
1+ -

The quantities a« and § follow the same transformation laws in all
cases provided that the relation y = 1 dis maintained

1o+

1 + ma!
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"1 - me
__.i gt (38b)

With these results it is easy to show that

1 - 2
e T (38¢)

1 + mat

where the &! dis defined in the same wWay in terms of the primed coordi-
nates, with «!' = 1.

The solution in the primed coordinates
To!

9! (%0 ,¥0"5%0") = gt(gr,71) dr? (39)

may now be expressed in terms of the function 7(T') expressed by equa-
tions (37), and relation (36) The desired relation is given by

\/l - m2 et

+ ma! ar!?

(ko)

Y

Equations (35) connecting the velocity components may be used as a check.

Conical Flow ’

The linearized conical—-flow theory is obtained immediately by
setting

af(r)
dr

g( g:T) = & ()-l-l)

This leads to the usual expressigns for the interior of the Mach cone
found by Busemann

w=FH E‘(e)j (42a)



3F NACA TN 2667 17

(L2b)

e
||
g
TN
|._l
oo+
m
m
N
2

<
]

W = Rl E‘(gﬂ 7 (L43a)
~mf-] L
u = RZ(fg di‘> (43b)

‘{" 2
v = Rz<—if—l—g—5— di') (43c)

For the exterior of the Mach cone

W= fl(‘el) + £5(62) (kka)
u=—fcoseldf1—fcosegdf2 (4hb)
v=—fsin61df1-fsin92df2 (Uhe)

Thus the well-known linearized supersonic conical-flow theory
appears as a special case of the theory here presented.

- Second-Degree Conical Flow

The case which is of most interest here is that for which the
potential is homogeneous of degree 2, with
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2 af(r)
(e,r) =5 S0 (1)
dr
this corresponding to
9, = RLE(T) (46)
Noting on the plane y =0 that
X0 o
€=125 - = =7Z(l ~ =~ (L7)
o) t o( §>

the velocity components may be expressed in the interior of the Mach

cone and on y, =0 as
o
= zomgé - —§—> di‘(g] (48a)
1 o
ZOMEIEG - z->d€| (L8b)
v = zomlzif—-————igg( - Eg) d{l (L8e)

In the exterior of the Mach cone, again on the plane y, =0, the
analogous expressions are

=
|

f=]
il

W= zo[f(l - to cos 071) dfq(61) +f(1_ - o cos 65) dfz(egﬂ (Lga)

u = z, —fcos 61(1 - to cos 89) dfy -—fcos 05(1 - t, cos 65) df{l (Lob)

v =324 —fsin 01(1 - t, ~c:os 01) afy - fsin 62(1 - to cos 65) dfi‘l (Lge)

L
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As is the case with problems in conical flow, the procedure is to
find a function f so that the prescribed boundary conditions are
satisfied. The quadratures corresponding to the relations given above
are needed to complete the problem. The examples worked out below serve
to illustrate the method.

ROLLING AND PITCHING WINGS

General Considerations

Wings of triangular shape in steady rolling and pitching motion are
now considered, with the apex of the triangle leading and with a straight
supersonic trailing edge. Only the cases with lateral symmetry are con-
sidered but cases of yawed wings may be obtained by a suitable use of the
oblique transformation. Such solutions are antisymmetric in the sense
of the section titled "Symmetry Considerations." For the wing in
reversed flow the methods of this report do not work. However, the
pitching~ and rolling-moment damping coefficients of the original wing
apply for the reversed wing, as shown by the reversed-flow theorems of
Brown (reference 6) and, in still more general form, of Ursell and Ward
(reference 7).

In order for the steady-state equations to be valid the motion must
be steady in that the local angle of attack at a point on the wing is
constant. For pitching motion this requires that the flight path be
curvilinear; for rolling motion, that the rolling angular velocity be
constant., In these cases the problem is identical with a problem in
direct flight with the angle of attack proportional to z or x.

Where these conditions are not met but where the second derivatives
with respect to time may he neglected the 'quasi~steady theory may be
used. In the cases here discussed the analysis is similar to that of
the steady case and the same functions appear.

Triangular Wings within Mach Cone
The choice of the function f({) in the cases involving a triangular
wing with lateral symmetry within the Mach cone is made through the

following con31derat10n5'

¢ +1(31) T%ﬁ f;ncgion gg mayfhige at worst’ a -3/2-power singularity at
= kb7, e leading edges o e w1ng

(2) The function df/df{ must have at least a double zero at § =
in order that the integrals for u and Vv converge
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(3) The function f must be bounded for large values of ¢,
corresponding to the intersection of the Mach cone with the plane of
the wing

(L) Lateral-symmetry considerations require that £ be an even
function of §{ in the pitching case and an odd one in the rolling case

The functions are thus expressed, apart from a multiplicative constant,
as

§2 - 2 2

3
fq(g) = Aq (50)
@12 _ §2>3/2

in the pitching:case and
¢
p(6) = 4p (51)

(%12 _ g2:)3/2

in the rolling case. The remainder of the problem consists of the
carrying out of the appropriate quadratures in order to evaluate the
arbitrary constants in terms of the physical problem and to obtain the
desired velocity component or pressure solutions.

The quadratures needed to establish the arbitrary constants are the
appropriate terms from the expression

=0 - 2
v(xo,O,Zo)=RZE fy < "0”1 : ] (52)

or in terms of the pitching and rolling angular velocities

q=-—=rR[iA Jfo dt (53a)
‘/ _ £2
p=—§=—RzJAt1 fo 1ot ag (53b)
o <F o _ §2 5/2
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These integrals are evaluated by means of Jacobi!s imaginary transformation

'M - a2
e s (51)

S

in terms of which the integrals become

JFJ. V1 - 82 ds (55
q-= *Aq
1 2
p = -gtg? [ = = (55)
0 /1 - 32E - (tl')zsé_-l
where
(t11)% = 1 - ;2 (56)

These integrals may be expressed through the classical, although lengthy,
methods of elliptic integrals. The resulting expressions are

-3qt12(1 - t12)

Aq =
4 (1 - 2692)Et(t1) + t12K1(t7)

(57a)

-3pt72(1 - t12)
Ap = (57b)
(2 = 112)Er(t1) - 12K (tq)

The pressure on the upper surface p, is given through equation (7)
as

2t12 - 2
P, = PVAgz - (58a)
1/2
3t12(t12 - t2) /
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t
Py = PVApZ - (58b)
’ i 3(t12 - t2)1/2

3

The pitching results may be combined with the well-known conical solu-
tion to obtain damping coefficients about axes other than that through
the vertex. The quasi-linear theory may be applied to obtain the appro-
priate nonsteady results.

The expressions given here agree with those of reference 8 in all
pertinent details.. Consideration of the symmetric solutians with n = 2
with specified pressure on a wing inside the Mach cone is included in
the appendix.

Triangular Wings outside Mach Cone

The triangular wing with supersonic leading edges is characterized .

by the tangent of the angle which the leading edge makes with the flow

direction, suitably reduced according to the Prandtl-Glauert transforma-
tion and the corresponding value of 67

t1 = sec 6, (59)
Taking the right-hand side of the wing so that

fZEO

fl=0’ 91> 60

the solution may be expressed in the form

ty (2 - 52)

R o 601 = 8) = ———— 18 = &) (600)
(t1 (t12 - 1)
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t12 t12
fi = pl—— 5(04 - 8,) ~
] p o2 ( 1 o)

1(6, — 671) (60b)
(t1¢ - 1) (HZ-DVZ

where 6 dis the Dirac delta function and 1 is the unit step function.
This leads to the expressions for the pressure on the upper right-hand
surface of the winglgutside the Mach cone

Py = PVq [:1(2 - tlz)z - %J (61a)
(t12 - 1)3
t12
p, = VP -——;—-———§7§(z - t1x) (61b)
(t1¢ - 1)

for the pitching and rolling cases, respectively. Corresponding results
hold for the left-hand side of the wing.

For the solutions in the interior of the Mach cone it is most con-

venient to consider the required form for the functions Py and ©
in the two cases. A consideration of the singularities leads to the

results
‘ £+t t ' :
q 1
= RL|—|1 + 62a)
Pyz ’m(oge E-t1 C-t §+tl>| (622

; + i bt
Pyx = m[;pﬁé_oge ¢ L 1 _ 1 > (62b)

whence the form of the function df/dt may be obtained

e U A SIS
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V1- 32 - % (¢ - t1)2 (L + 1)°

fql(c) = =

) ol
3

- + +

. (63b)
oo 2] =02 (-2 (g2

2
__p_t 2ty 1 £
fp'(g) - - ;

Application of equation (48a) then gives the pressure on the upper sur—
face of the wing

1
Py = PVq e -2thé12 - IVEZ - x2 +
(1% - 1)3

1-1tt
[Ei(2 - %)z —.21 cos™L L% 4

t1 + ¢t
1+ tyt
2 -1 1 ‘
t1(2 - t74) + é] cos™t ——— 6lia)
[:i( 1 P (
172 1 - t1t
Py = VP = (z - t1x) cos™L A
t -

w(tq2 ~ 1)3/2

-1 1+ tlt

trd

(6lib)

(z + t3x) cos

These results check with those of previous investigators, for example,
reference 8. It may be readily checked that equations (6L) fit equa-
tions (61) at + = 1 and that equations (63) are consistent with
equations (60) on the Mach cone.
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FAMITY OF SWEPT DELTA WINGS

The methods given above have been applied to the calculation of the
wave drag of a family of thin wings at zero incidence. These wings are
symmetric laterally and have a symmetric thickness distribution; thus
the resulting solution for the velocity potential has the same symmetry
and there are no 1ift forces on the wings. The plan—-form shape is a
quadrilateral with two of the vertices on the axis, so that the wing
appears as a delta wing with sweep.

With the origin at the forward vertex of the wing the leading edge

is given by the equation

z - — =0 (65a)

where t7 1is a parameter indicating the angle between the leading edge

and the flow direction. If the maximum chord on the central axis is cg
and to is a similar parameter giving the trailing edge direction, the

trailing edge is given by the equation

Co - 2 - %?l =0 (65b)
2

If the wing has a circular-arc profile the upper surface of the
wing on the plan form must be given by

Ty = i—-:(z - %‘-)(co -z - J%)w(m) (66)

where T is the thickness ratio of the central section and (0) = 1.
The lower surface of the wing is given simply by the negative of this
expression. For a wing with constant thickness ratio the function
must be .

-1

= (1 - 2—2 X 6

¥ < o s (67)
2Y1

Since such a wing cannot be represented by a finite number of homogeneous
flows the choice is made here that

v =1 (68)
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The family of wings to be investigated has the thickness distribu-—
tion given by '

_ 2T x| _ I
yu‘ggz*:gl—(%—z t (69)

for which the boundary condition is

V. fs) 2T to - L
&=__yu=—-co—2z+————2 llx]> (70)
v oz Co tztl

It may be noted that such a wing has constant curvature in the axial
direction, this being

% e

aZ2 Co

(71)

The solution may be considered to consist of three separate parts
corresponding to the three terms in the parentheses of equation (70).
The first of these is a conical flow of a type much utilized in delta-
wing calculations and the solution will not be expressed here, The other
two are of the second-degree conical~flow type, one with Pyx = 0 and

Py = = ﬁi'—" (72a)
(8]

and the other with Pyz = 0 and

_omv b2 - b6 ix]
e R (72b)

The first of these two solutions of the second degree is, for
t1 > 1 and the wing lying outside the Mach cone of the vertex, identi-

cal with the pitching solution of the preceding section with

_ LIV
Co

(73)
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" For the purpose of comparing solutions with Y7 greater than and less
than 1 the pressure solution (6la) may be rewritten as

LTov2 1
p, = —= —21;1\/’012 -1 22 - %2 +

C
° w12 - 1)3/2

fiZ - 1V1 - 2
4

1~ gt

[§1(2 - t12)z - x| tan~l

211 -+t2 |
El(z - $12)z + _;_l tan—L Vlbl 3 +{,t ' (7ka)
1

For the case where t] < 1 the corresponding solution is immediately
obtained from equation (7ha)

L Tov2 1
Py = e 2tldl - t12 ﬂz2 - x2 -

- t12)3/2

4 \ﬁ - t]_é \/1 - t2

1 - tyt

E1(2 - t;2)z - x| tanh

V1 - 622 y/1 - 42
1+ 9t

[t1(2 - £12)z + x| tamnL (7kb)

For the second solution the result has some similarities to the
rolling case of the preceding section with

2TV ) - tp

— (75)
Co 'bltz
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the solutions exterior to the Mach cone being identical on the right-
hand side and of opposite sign on the left. In the interior of the Mach

cone equation (62b) must be replaced by

2 t t
R = loge : S S (76)
L2 -2 -ty G+t

Pyx T

the new singularity at ¢ = O appearing because of the discontinuous
behavior of the derivative of |x|. Thus equation (63b) is replaced by
L]

2 o2
£1(g) = - B — . N (77)

K J1 - e2[e(t2 - 52) 7 (¢ - )% (L + tl)z

Eith this formula and relation (75) the pressure may be expressed for
1 >1 as

2

2Tpve B - o

Py T 55 t . -2t1Vt12 - 122 - x2 +
b8 (12 - 1)3/2

2-1y1 -1t
t12(z - t3x) tan~1 #Ei v +
1 - tyt
£12 = 11 - ¢2
tlz(z + t1x) tan™l vhi V

1+ Ht (78a)

Correspondingly, for +ty < 1

_2TpV2 ty ~ b
Pu B Co t1t2 [tl tll - t12 Jl - t2
m(l -t 2)3/2

1 -2y -2

1-tHt

_1\/{"1312‘/1"1:’2

1+ t3t

t12(z ~ t7x) tanh™l

t12(z + t1x) tanh (78b)

-
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The remainder of the problem is to multiply these pressures by the
local angle of attack and to add the results of the integrations of
these products over the area of the wing. The numerical work involved
in this procedure which yields the drag is exceedingly long and tedious
and no attempt will be made here to repeat any of these calculations.
The analytical results for the drag of this system of bodies are given
directly.

The drag given for this family of bodies by strip theory including

the VM2 -~ 1 factor, which is what the drag should approach for very
large Mach numbers, may be expressed by

872 ‘
Cp, = ——— (79)

M2 - 1

in terms of the drag coefficient. This is less than the two-dimensional
value for a circular-arc airfoil by a factor of 1/2 because the thick-
ness ratio is not constant, varying linearly from-a zero value at the
wing tips to the reference value T at the root., For convenience the
drags are all represented as the ratio of the drag coefficient to this
reference fictitious value obtained from strip theory.

The results are given below. The new parameter s is introduced,

= t1/t2 (80)

which is geometric, independent of M for a certain wing. For
1<ty <e® and 1< |to],

CD/CDO

(1 - s2) 2(1 + 352) l~-2s - sf] to tan'1Vt22 -1
n'(]_ - 5)3 1 - S S(tzz - 1) ‘/t22 -1

2s5(3 + s2) 1+ 25 - s2|(t tan‘1Vt12 -1 {i os

1 - s? (t32 - 1) 192 - 1

2 (1 - s2)?
+

s(t2® = 1) &2(t12 - 1)(42 - 1)

(81)
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This result must be specialized by suitable limiting processes in several
special cases:

Case a: where t] =1 and tp = 1/s,

+

-1 _
CD/CDO _ 1 (? s+ 852 + s?) to tan Vt2 1

(1 - s)3 bp2 - 1

%(? - 26s - 82 - s3 - s i]_ (82)

Case B: where 1/tp =0 and s =0,

. tl tan"1Vt1§ -1 1
+ - (83)

1)3/2 ﬂtl(tlz - 1)

u

1

Cp/Cp,,

Case y: where to = -t and s = -1 (swept wing of constant chord),

!
Cn/C = c——— 8)_1_
' o, f? -1 o

Case 6: where tp =t; and s =1,

2

5y tan~hftq2 - 1
Cp/Cp =-—————-—-(t16—2t)4+10t2—-)4> 1 1
w(t,° - 1) \/tlz"l

% 1 (31l - 286,2 + 1é§] (85)

Case (a - B): where 1/tp =0 and t =1,

2
Cp/Cp, =1+ Pl 1.2122 (86)
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Case (a - 8): where t1 = to =1,
368
¢/Cp, =

105w

These formulas, with the general rever'sed~flow theorem for drag
(reference 1), give the theoretical wave drag completely for the case
in which both leading and trailing edges are supersonic. The case in
which both edges are subsonic lies outside the scope of the present
analysis. For the case in which one edge is subsonic -and the other
supersonic, without loss of generality as far as the drag is concerned,
the leading edge may be required to be the subsonic one.

= 1.,1156 (87)

The drag coefficients for the case 0 < t] <1 may be represented
as the sum of two terms CDl + ACp, where Cpyp is the drag coefficient
as calculated by formulas (81) and (83) with the replacement

b tan 612 -1ty tamh L) <42
2 2
2 - 1 Vi- 1t

and the ACp dis an incremental drag term. Thisvincremental term my
be expressed for 0 < %] <1 and 1< [tp| as

(88)

- 52 _Igzl + 352) _
n(l - g)3 L_l - s ’

t, tan-L \t2? - 1\/1—‘ £

1-2s - s2 U bt

¢ S(’b22 -1) \/tZ -1 &
(-)[(3+s) 1-25—52+
1 - 412 1 -2 s(t2° - 1)

1
2t, lo -~
"1tk (1‘41)<1+3s2+ 1 )
Vi-t2 [\-s%2 1-12

Kp/Cp,, =

(89)




32 NACA TN 2667

For the special cases limiting operations are again necessary:

Case B: where 1/tp =0 and s = 0,

1 -
86p/Cp = Z|-2 tant

f-wu? 2t1(2 - £;°) 1

£ - + 3/2 1oge _E_ (90)
1 t1y1 - t12 (1 - %) L

By the stratagem of introducing terms of the form |s| the two remaining

special cases may be expressed together. In these cases the CDl term
is also needed. For ,

1]

Case €: where t2 =1 and 1t = s,

and for

1]

Case k: where to =~1 and t; = -s,

ty tanh™HY1 - ;2

1 2
Cpy/Cp, = ————=|-(1++ 8s - 5= + 2s3) +
Dl/ (o] Tf(l _ 8)3 '—_.1 ~ t12
:—|<i + hs + s2 + 2683 - 23&) (91a)
3is .

1 - 25 - 82)(1 - 5)2 -

1
ACp/Cp_ =
° nVl - szlsl(l - 8)2

252(1 + s)(2 + 3s2) logg (T%t>

s<3 - 25 + 852 + 53) + (91b)

1l -~ 52

Although the actual drag coefficient in these last two cases is obtained
by adding the two terms, it is convenient for computational purposes to
display them separately.
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Calculations based on the foregoing formulas have been made for
s =#£1, x/%/2, #1/2, +1/L;, and 0. Figure 1 shows the geometry of
the family of wings under consideration. Figure 2 shows a plot of
1/t7 against 1/t to illustrate the way in which the parameters are
related. Figures 3 to 7 give the drag curves, plotted logarithmically
against t7, resulting from the computations. The calculated values

of CD/CDO, including the incremental term for t; <1, are given in
table I.

It might be noted that in using these formilas for computation
the greatest care must be taken to Choose the correct branch of the
function tan—l. '

APPLICATION TO UNSTEADY-FLOW PROBLEMS

Basic Equations

The velocity potential in unstead& linearized flow, after the
application of the Prandtl-Glauert transformation which leads to equa—
tion (9), may be expressed

1

- Ot *
M2 - 1

Dy + byy = gz = Oty (92)

M2 -1

in which the time coordinate is defined as ag times the timé, so that
ay does not appear in the equation. A new fictitious time variable is
introduced

= (M2 -~ 1)t - Mz (93)
which leads to the equation

Ox *+ Oyy = bpg = “Orr - (9k)
The pressure is expressed by the relations

t . -p"“_~ 47 ’ ' ' . . . -
— ="M@, + P+’ ‘ ‘ . (95a)
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- LB =M, - 0r (95b)
Po2o

where the derivatives with respect to 2z are taken with t constant
and with T constant, respectively.

Quasi-Stationary Theory

The quasi-stationary theory is obtained by assuming that terms
involving the second derivative with respect to time may be neglected,

or that only the first two terms in a power series in t need be con-
sidered. Thus, '

M 1
d =0, + 7P + 30 T 96b
ot i Wt (960)
Denoting
@ = 0(a,) (97)

as the solution to the problem in terms of the specified boundary values
of Py on the plan form of interest, there results

LS
1l

Oey) * o5 O(z0) * = o(0y)

1]

(M= TGP R CP] B CPIIS

At t =0 +the last term may be dropped but the term in

> - remains
as a contribution due to unsteady-flow effects., This result also may be

obtained by taking the first two terms in a frequency expansion of the

results according to the harmonic theory (cf. the results of Miles
(reference 9)).
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In pitching and rolling motion the solution apart from that due to
the instantaneous angle of attack may be divided into two parts, one
due to the appropriate angular velocity proper which appears in the
¢o term and one due to the time rate of change of the local angle of

M
attack which appears in the term. For steady pitching and
Pp v — y

rolling motion the second term does not appear. This may be checked by
more accurate analyses which take the rotation of the coordinate system
into account.

Harmonic Motion

The solution is now assumed to be harmonic of angular frequency o
in the time. A reduced frequency is introduced

k=M2‘° - (99)

and the new potential function is introduced

O = eik7¢ ~~ei(wt’Mkz)¢(x,y,z) (100)

This function satisfies the equation

q’Joc"'q’yy"q’zz"k2q>=0 (101)

which reduces to equation (9) for o = 0. The usual boundary condition
in terms of @y is of the type

= gilficn (o—lat

Py 3) ” (102)

The pressure is expressed

e Rl ¢ I (203)
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A solution is now sought for equation (101) of a form similar to
that for steady flow

‘ ' T
; o}
oo r7or20) = 1(Re) [ © (8,7 ar (20L)
where R is the hyperbolic disténce‘

R = V;2 -x2 - y2 (105)

and g is considered to be homogeneous of degree n, SO that

g ._ _
£ 5; = me (106)

A procedure similar to that followed in the steady-state case shows
that the assumed solution is valid if h satisfies the equation

2(n + 1)

—— b+ k%h = 0 (107)

hRR +

for which the appropriate solution is
J_1(kR)

2p2 n+s
h = &51(% + %; - E]?{> = r<% + %>--3--i (108)
. 5

>

This approach was suggested by the parallel exposition of Germain and
Bader (reference 10).

It is still possible, though'the-practicality might be questioned,
to express a solution in terms of a general function of two variables.
Noting that h may be expressed as

o) o
h = ———————\jp cos (kR sin 9))sin2n+1 e de (109)
niyw YO . .-

these solutions may be superposed to obtain a single one of the form
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m AT :
?(X05¥0520) =ff ° g(& sin2e,7) dr cos (kR, sin 6) sin 6 d6 (110)
0

where the function g is a new one suitably constructed from the old
ones.

i

Brown University
Providence, R. I., August 13, 1951
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APPENDIX
CONSIDERATION OF ADDITIONAL SOLUTIONS OF SYMMETRIC WINGS

Since the writing of this report Lomax and Heaslet (reference 11)
have shown that the Symmetric solution with n = 2 with specified
pressure on a wWing inside the Mach cone is not unique. It is of
interest to investigate this from the point of view of the theory
presented herein. The quantity n is equal to ¥ + 1 of Lomax and
Heaslet's theory.

In the 1ift solutions studied in the present investigation, the
£f(t) functions were of the generalized form given by

df gm n!
a . = B o(k,
T 1w g(&,¢6)

where m must satisfy the inequality

nSmsS2n-1

to prevent unallowable singularities on the Mach cone. If m is odd
the solution is laterally symmetric; if m is even the solution is

laterally antisymmetric. The number of solutions available is in each
case equal to the number needed to cover the possible behavior of Py

on the wing, so that no eigensolutions are indicated.

In the symmetric or thickness case the solutions are of the form

ar igh
at 1
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where m now satisfies the inequality
nS<m<2n

In this case for any n there is one solution available in excess of
the number needed to cover the possible behavior of @, on the wing,
thus yielding one eigensolution for each value of n., For n odd the
extra solution appears with m odd and is correspondingly laterally
antisymmetric. For n even the extra solution appears with m even
and is laterally symmetric. In the case n = 2 the nonuniqueness is
that found by Lomax and Heaslet and the theory of this report provides
a complete check of their result. The characteristic solution still
exists without the lateral symmstry as long as both edges are subsonic
leading edges.

In the conical case n =1 the characteristic solution is laterally
antisymmetric and has not, to the authors! knowledge, been previously
found. For this case the solution is expressed by

ar ity
at ,\2
- &)
1- 21 - 2=
giving the normal velocity distribution
v = R tu
_ &
o2

This gives for the half-thickness distribution of this wing

t
- -1 2%
¥ = x cosh p

As was to be expected this distribution of thickness is negative on one
side. It may be superposed upon the known solution of constant pressure
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TABLE I

CALCULATED VALUES OF Cp/Cp_ OR ch/cDO + ACpfCp,

t1
Wz L 2y2 2 V2 1 /2 | 1/2 v/l | /L
to
1 1.1156| 0.8809 | 0,7431 | ——— | 0.5097
V2 1,1101 | 21,1228 .871h| =———=0,6131 | ~——=—-
2 - - 1.0899 | 1.,106L | 1.1354 [ ———| .7287
2/2 1.065L | 1.0811¢1.1073~ -——| .86L43
L 1.043h | 1.0560 | 1.0768 1,1630
Wz 1,0268 | 1,0360 | 1,0506 1.1138 — |-
8 1.0213| 1.0311 | -———— | 1.07L2- ————
o 1.0127 | 1.0236 | 1,0427 | 1,0753 | 1.1285 | 1.2122 | .86L5 | .7188| .5989 | .LokO
-8 1.0125 | 1.0229 | ———— | 1,0812
-WZ |1.0160| 1.025L | 1.0460 1.1552 ] — | ———-
-4 m——1,0328 | 1,052 | 1,0941 | ———| 1.3008 -
-2y7 R [ 1,0690| 1,1120| 1,2008 | ==———~| .8771
-2 1.1547 | 1.2619 | 14754 | ——— | .7168
-vZ 1.h142 | 1.8035( 9147 | ————| .5898 | ———-
-1 oo .992L | L730L | m===—=| .4B20
W
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